.{\displaystyle \mathrm {P} (A\cap B)=\mathrm {P} (A)\mathrm {P} (B)}
atau
{\displaystyle \mathrm {P} (A\cap B)=\mathrm {P} (A)\mathrm {P} (B)\Leftrightarrow \mathrm {P} (A)={\frac {\mathrm {P} (A)\mathrm {P} (B)}{\mathrm {P} (B)}}={\frac {\mathrm {P} (A\cap B)}{\mathrm {P} (B)}}=\mathrm {P} (A\mid B)}
setaranya
{\displaystyle \mathrm {P} (A\cap B)=\mathrm {P} (A)\mathrm {P} (B)\Leftrightarrow \mathrm {P} (B)=\mathrm {P} (B\mid A)}
Contoh
- Dalam sebuah kotak terdapat 5 bola merah, 4 bola biru dan 3 bola hitam. Tiga bola diambil sekaligus dari dalam kotak secara acak. Berapakah peluang bahwa bola yang terambil adalah 2 bola merah dan 1 bola hitam?
Â
{\displaystyle P={\frac {C_{2}^{5}\,C_{1}^{3}}{C_{3}^{12}}}={\frac {{\frac {5!}{2!\,3!}}\,{\frac {3!}{1!\,2!}}}{\frac {12!}{3!\,9!}}}={\frac {3}{22}}}
- Dalam sebuah keranjang terdapat 7 bola merah, 5 bola biru dan 8 bola hitam. Jika diambil 3 bola secara acak dengan syarat bola yang diambil dikembalikan lagi ke dalam keranjang, berapa peluang bahwa bola yang terambil secara berturut-turut berwarna merah,hitam dan biru?
Â
{\displaystyle P={\frac {7}{20}}\,{\frac {8}{20}}\,{\frac {5}{20}}={\frac {7}{200}}}
- Dalam sebuah kotak terdapat 5 bola merah, 6 bola hijau dan 4 bola kuning. Jika diambil 3 bola secara acak tanpa pengembalian, berapakah peluang bola yang terambil secara berturut-turut adalah merah, hijau, kuning?
{\displaystyle P={\frac {5}{15}}\,{\frac {6}{14}}\,{\frac {4}{13}}={\frac {4}{91}}}
Kejadian atau peristiwa merupakan himpunan bagian dari ruang sampel
Definisi peluang :
Peluang suatu kejadian yang diinginkan adalah perbandingan banyaknya titik sampel kejadian yang diinginkan itu dengan banyaknya anggota ruang sampel kejadian tersebut.
Misalkan A adalah suatu kejadian yang diinginkan, maka nilai peluang kejadian A dinyatakan dengan
rumus10.jpg
Beri Komentar
Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!