Optimalisasi Data Mining untuk Memprofilkan Korban Penipuan Online: Tantangan dan Solusi dalam Keamanan Digital di Indonesia
Dalam era digital yang semakin maju, kejahatan siber terus meningkat dan mengancam keamanan pengguna internet di seluruh dunia. Di Indonesia, kejahatan siber, khususnya penipuan online, menjadi salah satu bentuk ancaman utama. Berdasarkan laporan penelitian yang dilakukan oleh Sunardi, Abdul Fadlil, dan Nur Makkie Perdana Kusuma pada tahun 2023, lebih dari 77% pengguna internet yang disurvei mengalami penipuan online, terutama melalui platform media sosial seperti Instagram dan WhatsApp.Â
Menariknya, profil korban didominasi oleh wanita (726 korban) dan rentang usia yang paling rentan adalah 23 hingga 28 tahun (35% dari total korban). Hal ini menunjukkan bahwa kelompok pengguna muda, yang seharusnya lebih melek teknologi, justru lebih rentan terhadap serangan ini.
Artikel tersebut membahas tentang penggunaan teknik klasifikasi data mining untuk memprofilkan korban penipuan online di Indonesia, menggunakan tiga model utama yaitu Nave Bayes, Decision Tree, dan Random Forest. Metode ini tidak hanya membantu dalam memahami pola sosiodemografi korban, tetapi juga memungkinkan pencegahan yang lebih tepat sasaran. Dengan akurasi model Nave Bayes dan Decision Tree yang mencapai 77,3%, penelitian ini memberikan wawasan penting tentang cara teknologi bisa digunakan untuk memerangi kejahatan siber.
Melalui analisis ini, kita melihat bahwa pengetahuan pengguna tentang keamanan siber masih rendah, terutama dalam hal menjaga keamanan akun media sosial. Kurangnya kesadaran akan praktik keamanan digital, seperti penggunaan kata sandi yang lemah, memberikan celah bagi pelaku penipuan untuk memanfaatkan situasi ini.
***
Dalam konteks data mining, penelitian yang dilakukan oleh Sunardi, Fadlil, dan Kusuma menawarkan wawasan yang berharga terkait profil korban penipuan online di Indonesia. Mereka menggunakan tiga algoritma populer dalam klasifikasi data mining: Nave Bayes, Decision Tree, dan Random Forest. Penelitian ini menemukan bahwa model Nave Bayes dan Decision Tree memiliki tingkat akurasi sebesar 77,3%, sedikit lebih tinggi dari Random Forest yang memiliki akurasi 76,8%.Â
Selain itu, model Nave Bayes dan Decision Tree memiliki recall sebesar 100%, menunjukkan kemampuan mereka dalam mengidentifikasi korban secara lebih konsisten. Ini menggarisbawahi bahwa model-model ini efektif dalam memprofilkan korban penipuan online, meskipun perbedaan kinerja antara model tersebut cukup tipis.
Profil korban yang dihasilkan dari analisis data menunjukkan bahwa mayoritas korban adalah pengguna media sosial yang aktif, dengan rata-rata menggunakan lebih dari 8 jam per hari di internet (31,91% dari responden). Sebanyak 49,75% korban adalah pelajar atau mahasiswa, yang mencerminkan bahwa kelompok usia muda, meskipun melek teknologi, tetap rentan terhadap serangan sosial engineering seperti phishing dan penipuan online.Â
Menariknya, survei ini juga menunjukkan bahwa perangkat yang paling sering digunakan oleh korban adalah smartphone, baik berbasis Android maupun iPhone, dengan angka sebesar 726 pengguna. Data ini penting karena menunjukkan betapa pentingnya kesadaran akan keamanan perangkat seluler, mengingat mayoritas penipuan terjadi melalui aplikasi media sosial seperti Instagram (699 kasus) dan WhatsApp (691 kasus).
Penelitian ini juga menyoroti bahwa penipuan online tidak hanya terjadi karena kelemahan teknis dalam aplikasi, tetapi lebih banyak disebabkan oleh perilaku pengguna yang kurang memperhatikan keamanan. Dengan 42,38% korban hanya memiliki pendidikan setingkat SMA, kesadaran akan ancaman keamanan digital menjadi tantangan besar di Indonesia. Hal ini diperkuat oleh fakta bahwa sebagian besar pengguna masih menggunakan kata sandi yang lemah atau tidak unik, membuka peluang bagi pelaku untuk mengeksploitasi kelemahan tersebut.
Studi ini memberikan pemahaman bahwa meskipun teknologi bisa membantu dalam memprediksi dan memprofilkan korban, pendekatan pencegahan harus melibatkan edukasi dan pelatihan kepada pengguna tentang pentingnya keamanan digital. Profiling yang akurat dari penelitian ini dapat menjadi alat penting bagi penegak hukum dan penyedia layanan untuk menyusun strategi yang lebih baik dalam melindungi masyarakat dari ancaman penipuan online di masa depan.
***
Penelitian Sunardi, Fadlil, dan Kusuma memberikan kontribusi signifikan dalam memahami profil korban penipuan online di Indonesia. Dengan menggunakan algoritma Nave Bayes dan Decision Tree, yang mencapai tingkat akurasi sebesar 77,3%, penelitian ini menunjukkan bahwa teknologi data mining mampu mengidentifikasi pola korban dengan baik. Temuan ini menjadi dasar penting bagi pengembangan strategi pencegahan yang lebih efektif, terutama dalam meningkatkan kesadaran akan keamanan siber di kalangan pengguna internet di Indonesia, yang sebagian besar masih rentan terhadap ancaman.
Namun, angka-angka yang diungkapkan dalam penelitian ini, seperti 49,75% korban adalah pelajar atau mahasiswa, menunjukkan perlunya pendekatan yang lebih komprehensif dalam edukasi digital. Edukasi ini tidak hanya harus menargetkan aspek teknis, tetapi juga kesadaran akan praktik keamanan sehari-hari, seperti penggunaan kata sandi yang kuat dan unik serta pemahaman tentang phishing dan metode penipuan online lainnya.
Dengan implementasi yang tepat, hasil penelitian ini dapat membantu mengurangi jumlah korban penipuan online secara signifikan. Penegak hukum dan penyedia layanan perlu bekerja sama untuk meningkatkan kampanye kesadaran publik dan memperkuat regulasi keamanan digital. Pada akhirnya, keamanan siber bukan hanya soal teknologi, tetapi juga soal perilaku dan kesadaran yang harus dibangun sejak dini.
Referensi
Sunardi, Fadlil, A., & Kusuma, N. M. P. (2023). Comparing Data Mining Classification for Online Fraud Victim Profile in Indonesia. INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, 7(1), 1–17. https://doi.org/10.29407/intensif.v7i1.18283
Baca konten-konten menarik Kompasiana langsung dari smartphone kamu. Follow channel WhatsApp Kompasiana sekarang di sini: https://whatsapp.com/channel/0029VaYjYaL4Spk7WflFYJ2H