Mohon tunggu...
Yuli Anita
Yuli Anita Mohon Tunggu... Guru - Guru

Jangan pernah berhenti untuk belajar

Selanjutnya

Tutup

Ruang Kelas Artikel Utama

Pelajaran Kehidupan dari Materi Persamaan Garis Lurus

23 November 2021   21:26 Diperbarui: 24 November 2021   16:20 2006
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Sumber gambar: tangkapan layar pribadi

Apakah materi matematika yang paling sulit di kelas 8? Jika ditanyakan pada siswa jawabannya biasanya hampir sama yaitu Persamaan Garis Lurus (PGL).Dalam proses pembelajaran materi PGL selalu memakan waktu yang lebih banyak dibanding materi yang lain. Jika materi yang lain bisa dihabiskan dalam waktu kira-kira 2-3 minggu, PGL bisa 4-5 minggu. Mengapa? Banyak rumus yang harus dihafal dan kadang bingung harus menggunakan rumus yang mana.

Tentang Materi Persamaan Garis Lurus

Garis hakekatnya adalah kumpulan titik-titik yang yang banyaknya tak terhingga dan posisinya saling berdampingan.

Persamaan Garis Lurus bisa dinyatakan dengan y= mx + c atau ax +by + c = 0

Ada banyak manfaat dari belajar materi PGL ini di antaranya adalah untuk menentukan nilai kemiringan suatu bangunan, menentukan hubungan antara jarak, waktu dan kecepatan, dan meramalkan harga suatu barang dalam kurun waktu tertentu.

Ada tiga rumus yang dipakai dalam pembelajaran PGL yaitu:

Rumus-rumus PGL, Sumber gambar :tangkapan layar pribadi
Rumus-rumus PGL, Sumber gambar :tangkapan layar pribadi
Karena banyak rumus itulah siswa biasanya menganggap materi ini sulit. Padahal rumus nomor 2 dan nomor 3 diperoleh dari rumus nomor satu yaitu gradien.Apakah gradien itu? Gradien adalah bilangan yang menunjukkan arah kemiringan dari sebuah garis lurus. Gradien dilambangkan dengan m yang diperoleh dari membandingkan komponen y dengan komponen x.

Untuk menentukan gradient sebuah garis cukup mengambil koordinat dua titik sembarang, lalu kita masukkan ke dalam rumus pertama.

Sumber gambar: tangkapan layar pribadi
Sumber gambar: tangkapan layar pribadi
Contoh: untuk mencari gradient garis pada gambar1 kita bisa  mengambil titik (0,0) dan (1,2),lalu memasukkannya ke dalam rumus. Diperoleh gradien garis tersebut adalah 2-0/1-0= 2.

Dengan cara yang sama, untuk menentukan gradient garis pada gambar kedua kita ambil titik (-1,3) dan (-2,6), dan diperoleh  gradiennya adalah 6-3 / -2-(-1)= -3

Bagaimana dengan garis yang sejajar dengan sumbu x dan sumbu y?

Garis yang sejajar sumbu x, Sumber gambar:  tangkapan layar pribadi
Garis yang sejajar sumbu x, Sumber gambar:  tangkapan layar pribadi
Dengan cara yang sama gradient garis di atas adalah 3-3/1-0 = 0

Garis yang sejajar sumbu y, Sumber gambar:  tangkapan layar pribadi
Garis yang sejajar sumbu y, Sumber gambar:  tangkapan layar pribadi
Sedangkan gradient garis di atas adalah 1-4 / 2-2 = -3/0 = tak terdefinisi atau tidak punya gradient.

Dapat diambil kesimpulan bahwa berdasarkan gradiennya ada bermacam-macam posisi garis lurus:
1. Jika gradiennya negatif, garis miring ke kiri .
2. Jika gradiennya positif,  garis miring ke kanan
3. Jika gradiennya nol ,posisi garis sejajar sumbu x (horizontal) dan
4. Garis yang sejajar sumbu y (vertikal)  tidak punya gradien

Karena gradient menunjukkan kemiringan garis, garis yang mempunyai gradien sama akan sejajar. Sebaliknya jika  gradiennya tidak sama,maka mereka pasti akan saling berpotongan.

Garis garis yang sejajar gradiennya sama, Sumber gambar:  tangkapan layar pribadi
Garis garis yang sejajar gradiennya sama, Sumber gambar:  tangkapan layar pribadi
Apakah pelajaran hidup yang bisa diambil dari kemiringan garis? Dalam hidup kadang timbul perselisihan antar satu orang dengan yang lain. Apabila dalam proses yang berjalan salah satu di antara keduanya mau mengalah sedikit saja, maka titik temu akan bisa didapatkan. Seperti halnya garis sejajar, jika salah satu arahnya sedikit diubah tentu mereka akan berpotongan.
Tidak ada yang mau mengalah, Sumber gambar: Parapuan
Tidak ada yang mau mengalah, Sumber gambar: Parapuan
Tapi jika masing-masing bersikukuh dengan prinsip yang dipegang, tidak mau sedikit mengalah, tidak akan diperoleh titik temu. Posisi keduanya bisa diibaratkan dua buah garis lurus yang sejajar. Dan hal yang menyedihkan dari dua garis sejajar adalah sampai seberapa pun diperpanjang, mereka tak akan pernah bisa saling bertemu. Hiks.

Semoga bermanfaat dan salam matematika... :)

Baca konten-konten menarik Kompasiana langsung dari smartphone kamu. Follow channel WhatsApp Kompasiana sekarang di sini: https://whatsapp.com/channel/0029VaYjYaL4Spk7WflFYJ2H

HALAMAN :
  1. 1
  2. 2
Mohon tunggu...

Lihat Konten Ruang Kelas Selengkapnya
Lihat Ruang Kelas Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun