Mohon tunggu...
Yona Maygita
Yona Maygita Mohon Tunggu... Mahasiswa - Mahasiswa

Saya adalah mahasiswa prodi Sastra Inggris di Universitas Negeri Padang. Blog ini dibuat untuk memenuhi tugas mata kuliah Indonesian - English Translation

Selanjutnya

Tutup

Ruang Kelas

The Limitation of DEEPL (Tambahan Kekurangan)

11 Oktober 2024   17:11 Diperbarui: 11 Oktober 2024   17:45 32
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

DeepL has some limitations despite being recognized as one of the good translation tools.

  1. Limited Languages: Although DeepL supports multiple languages, the number of supported languages is still less compared to some other AI translation tools. Currently, DeepL can translate 11 languages, primarily European languages.

  2. Limited Features: Compared to other translation tools, DeepL may lack additional features such as translating more complex documents or offering wider integration with other applications. Additionally, it has fewer options for voice translation.

  3. Lack of Emotional Nuances: DeepL often struggles to capture the emotional nuances contained in the text. Automatic translation may not reproduce the feeling or tone the author intends to convey, making translations feel flat and lacking depth.

  4. Errors in Idioms and Expressions: Idioms and expressions pose a challenge for translation engines like DeepL. Direct translations can result in inappropriate or absurd meanings, as idioms often have cultural significance that cannot be translated literally. This limitation can lead to significant misunderstandings.

  5. Lack of Human Touch: One of the most significant drawbacks of DeepL is the absence of a human touch in the translation process. Machines cannot replicate the understanding, intuition, and interpretation that human translators possess, especially in complex cultural contexts. As a result, translations can feel inauthentic and lack the nuance of the original text.

  6. Contextual Understanding: DeepL sometimes fails to grasp the broader context of a passage, which can lead to translations that are technically correct but contextually inappropriate. Human translators can consider cultural references and context that machines may overlook.

In summary, while DeepL is a powerful tool for many translation tasks, its limitations highlight the ongoing need for human involvement in achieving high-quality translations, particularly in nuanced or culturally rich texts.

Yona Maygita 

21019066

24 JD I-E TRANS JM9-10 NKall21 LM

HALAMAN :
  1. 1
  2. 2
Mohon tunggu...

Lihat Konten Ruang Kelas Selengkapnya
Lihat Ruang Kelas Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun