Mohon tunggu...
Tazkia Ikshanul
Tazkia Ikshanul Mohon Tunggu... Mahasiswa - UIN Maulana Malik Ibrahim Malang

Informatics Engineering Student

Selanjutnya

Tutup

Ilmu Alam & Tekno

Masa Depan Terbuka: Etika dan Privasi dalam Jaringan WP-MEC

25 November 2023   04:42 Diperbarui: 25 November 2023   04:42 106
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Sistem informasi telah menjadi tulang punggung untuk kemajuan teknologi, dan inovasi terus berlanjut dengan munculnya jaringan komputasi edge seluler bertenaga nirkabel. Dalam sebuah artikel terbaru berjudul "Online Learning for Distributed Computation Offloading in Wireless Powered Mobile Edge Computing Networks," para peneliti memaparkan konsep baru yang berpotensi mengubah paradigma pengelolaan tugas komputasi dalam lingkungan yang semakin terhubung.

Melangkah ke Masa Depan: Wireless Powered Mobile Edge Computing (WP-MEC)

Dalam era Komunikasi Seluler Generasi Keenam (6G) dan Internet of Things (IoT), latensi rendah dan komputasi intensif menjadi keharusan. Teknologi Mobile Edge Computing (MEC) dan Wireless Power Transfer (WPT) muncul sebagai solusi untuk tantangan ini. Konsep Wireless Powered Mobile Edge Computing (WP-MEC) menggabungkan kedua teknologi ini, memungkinkan klien seluler untuk melakukan komputasi offloading ke server tepi sambil mengisi daya secara nirkabel.

Pentingnya desentralisasi dalam jaringan 6G memunculkan kebutuhan akan algoritma pembelajaran online untuk penghapusan komputasi terdistribusi. Inilah yang diusulkan oleh makalah ini, yang tidak hanya merinci algoritma pembelajaran online baru, tetapi juga menerapkan pendekatan terdesentralisasi dengan beberapa server tepi yang berperan dalam pembongkaran tugas.

Menjembatani Penundaan dan Kendala Energi

Salah satu kontribusi utama makalah ini adalah merumuskan masalah pembongkaran komputasi terdistribusi sebagai tantangan minimalisasi penundaan. Dengan mempertimbangkan tenggat waktu tugas dan kendala energi, para peneliti menghadirkan algoritma pembelajaran online bernama OLD-COP (Online Learning for Distributed Computation Offloading). Algoritma ini berbasis Deep Reinforcement Learning (DRL) dan dirancang untuk menjadwalkan persyaratan pembongkaran dinamis klien seluler secara online.

OLD-COP memanfaatkan model saraf yang inovatif untuk mempelajari keputusan pembongkaran dan pembagian waktu di setiap slot waktu. Dengan cara ini, algoritma ini mencapai tujuan utama: meminimalkan penundaan penyelesaian tugas jangka panjang. Hasil eksperimen menunjukkan bahwa OLD-COP mengungguli skema representatif lainnya, membuktikan keunggulan dalam hal penundaan penyelesaian tugas rata-rata dan kecepatan konvergensi algoritma.

Implikasi Praktis untuk WP-MEC

Algoritma pembelajaran online ini memiliki implikasi praktis yang signifikan untuk WP-MEC. Pertama-tama, memungkinkan klien seluler untuk memperluas kapasitas komputasi mereka melalui pembongkaran tugas. Dengan mempertimbangkan kendala energi, algoritma ini tidak hanya mengoptimalkan kinerja jangka panjang tetapi juga memberikan pendekatan terdesentralisasi yang sejalan dengan persyaratan jaringan 6G yang akan datang.

Identifikasi sembilan komponen desain platform dalam studi ini memberikan pandangan praktis tentang aspek operasional dalam lingkungan WP-MEC. Sebagai panduan bagi pengembang dan manajer platform, ini dapat digunakan untuk merancang dan mengoptimalkan platform e-commerce mereka sendiri.

Penyelesaian Tugas dan Keamanan

Penggunaan model pembelajaran mendalam dalam OLD-COP menyoroti potensi integrasi keamanan dalam pembongkaran komputasi terdistribusi. Dengan menyinkronkan parameter dan koordinasi melalui beberapa model terdesentralisasi pada server tepi, algoritma ini menawarkan solusi yang aman dan efisien.

Dalam lingkungan yang semakin terhubung, keamanan informasi menjadi suatu keharusan. Algoritma ini membuktikan bahwa keamanan dapat dicapai tanpa mengorbankan efisiensi, memperkuat argumentasi untuk penerapan model pembelajaran dalam konteks keamanan sistem informasi.

Menghadapi Tantangan Masa Depan

Dengan semakin berkembangnya teknologi, makalah ini menunjukkan bahwa pembongkaran komputasi terdistribusi dalam WP-MEC adalah langkah yang mendukung arah masa depan teknologi informasi. Desain terdesentralisasi, integrasi model pembelajaran, dan fokus pada keamanan memberikan gambaran holistik tentang bagaimana teknologi ini dapat menjawab tantangan jaringan 6G.

makalah ini tidak hanya membuka jendela menuju masa depan WP-MEC tetapi juga membuka diskusi tentang bagaimana teknologi informasi dapat terus berkembang melalui inovasi dan penelitian yang cermat. Langkah ini bukan hanya evolusi teknologi, tetapi juga perubahan paradigma menuju jaringan yang lebih efisien, aman, dan terdesentralisasi.

Baca konten-konten menarik Kompasiana langsung dari smartphone kamu. Follow channel WhatsApp Kompasiana sekarang di sini: https://whatsapp.com/channel/0029VaYjYaL4Spk7WflFYJ2H

HALAMAN :
  1. 1
  2. 2
Mohon tunggu...

Lihat Konten Ilmu Alam & Tekno Selengkapnya
Lihat Ilmu Alam & Tekno Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun