Mohon tunggu...
MUHAMAD JOHAR ARIFIN
MUHAMAD JOHAR ARIFIN Mohon Tunggu... Mahasiswa - UIN MALANG

Teknik Informatika UIN Malang

Selanjutnya

Tutup

Ilmu Alam & Tekno

Inovasi GAVulExplainer: Prediksi Kerentanan Perangkat Lunak yang Lebih Terbuka

1 Oktober 2024   11:45 Diperbarui: 1 Oktober 2024   11:46 93
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik


Secara keseluruhan, penelitian yang dilakukan oleh Nguyen, Hoang, Dam, dan Ghose melalui pengembangan GAVulExplainer menunjukkan kemajuan signifikan dalam bidang prediksi kerentanan perangkat lunak. Dengan meningkatkan transparansi model prediksi berbasis graf, GAVulExplainer memberikan solusi terhadap masalah interpretasi hasil yang sering kali menghalangi adopsi model kecerdasan buatan di industri. Data empiris menunjukkan bahwa alat ini secara konsisten menghasilkan hasil yang lebih baik dibandingkan metode lainnya, seperti yang terlihat dari rata-rata fidelity yang lebih rendah.

Dari perspektif praktis, implikasi dari penelitian ini sangat relevan untuk dunia industri, di mana keamanan perangkat lunak menjadi isu utama. Dengan kemampuan untuk memberikan penjelasan yang jelas terhadap prediksi kerentanan, GAVulExplainer dapat membantu meningkatkan kepercayaan pengguna dan mempercepat adopsi teknologi prediksi kerentanan berbasis deep learning. Tantangan yang dihadapi ke depan mungkin terletak pada implementasi skala besar dan integrasi dengan sistem yang sudah ada.

Kesimpulannya, artikel ini tidak hanya memperkenalkan sebuah alat yang inovatif tetapi juga menyoroti pentingnya keterbukaan dan interpretabilitas dalam sistem kecerdasan buatan. Dengan pendekatan yang fleksibel dan terbukti lebih akurat, GAVulExplainer berpotensi menjadi terobosan besar dalam bidang keamanan siber di masa depan.

Referensi

Nguyen, H. Q., Hoang, T., Dam, H. K., & Ghose, A. (2024). Graph-based explainable vulnerability prediction. Information and Software Technology, 177, 107566. https://doi.org/10.1016/j.infsof.2024.107566

Baca konten-konten menarik Kompasiana langsung dari smartphone kamu. Follow channel WhatsApp Kompasiana sekarang di sini: https://whatsapp.com/channel/0029VaYjYaL4Spk7WflFYJ2H

HALAMAN :
  1. 1
  2. 2
Mohon tunggu...

Lihat Konten Ilmu Alam & Tekno Selengkapnya
Lihat Ilmu Alam & Tekno Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun