b) Serahkan uangmu sekarang!
c) x +3 = 8
e) x >3
Bukan proposisi, kalimat a adalah kalaimat tanya, sedangkan kalimat b adalah kalimat perintah, keduanya tidak mempunyai nilai kebenaran. dari contoh 1.1 dan contoh 1.2 di atas, kita dapat menyimpulkan bahwa proposisi selalu dinyatakan sebagai kalimat berita, bukan sebagai kalimat tanya atau kalimat perintah.Â
1. 2 Mengkoninasikan Proposisi
Semua merupakan proposisi a, b, dan c bernilai benar, tetapi proposisi d salah karena ibu kota jawa Barat seharusnya adalah Bandng dan proposisi e bernilai salah karena seharusnya 12 < 19. Proposisi f sampai i memang tdak dapat langsung ditetapkan kebenarannya, namun suatu hal yang pasti, proposisi tersebut tidak mungkin benar dan sekaligus salah. demikian pula halnya untuk proposisi g dan h. Proposisi i bisa benar atau salah, karena sampai saat ini ada ilmuan yang dapat memastikan kebenarannya
Kita dapat membentuk proposisi baru dengan cara mengkombinasikan satu atau lebih proposisi. Operator yang digunakan untuk mengkombinasikan proposisi disebut operator logika. Operator logika dasar yang digunakan adalah dan (and), atau (or), dan tidak (not). Dua operator pertama dinamakan operator biner karena operator tersebut mengoperasikan dua buah proposisi, sedangkan operator ketiga dinamakan operator uner karena hanya membutuhkan satu buah proposisi.
Proposisi baru yang diperoleh dari pengkombinasian terseebut dinamakan proposisi majemuk (compound proposition). Proposisi yang bukan merupakan kombinasi proposisi lain disebut proposisi atomik. Dengan kata lain, proposisi majemuk disusun dari proposisi-proposisi atomik. George Boole dalam bukunya The Laws of Thought mengemukakan bahwa proposisi majemuk ada tiga macam, yaitu konjungsi, disjungsi, dan ingkaran. Ketiganya didefinisikan sebagai berikut
DEFINISI 1.2
Misalkan p dan q adalah proposisi.
Konjungsi (conjuntion) p dan q dinyatakan dengan notasi p ^ q, adalah proposi