Mohon tunggu...
Indobot Academy
Indobot Academy Mohon Tunggu... Lainnya - PT Ozami Inti Sinergi

About Indobot Academy PT Ozami Inti Sinergi adalah perusahaan yang bergerak di bidang pendidikan dengan Kode KBLI 85499, 85493, 85497, 85495 serta sudah memiliki sertifikat ISO 9001 : 2015. Didirikan berdasarkan Akta Pendirian No. 14 tanggal 25 Februari 2021 yang telah mendapatkan pengesahan dari Menteri Hukum dan Hak Asasi Manusia Nomor AHU-0013991.AH.01.01 Tanggal 26 Februari 2021 dan telah dicatatkan dalam Sistem Administrasi Badan Hukum No AHU-0013991.AH.01.01 Tahun 2021 tanggal 26 Februari. Kantor Pusat Yogyakarta Jln. Affandi No 5, Kec. Depok, Kab. Sleman, D.I.Yogyakarta Contact Email : office@indobot.co.id 0813-2564-5334 - CS Rakhmi 0851-5731-7552 - Partnership Farhan Link Bio: taplink.cc/indobotacademy

Selanjutnya

Tutup

Inovasi

5 Algoritma Machine Learning yang Wajib Kamu Tahu

6 Oktober 2024   13:00 Diperbarui: 6 Oktober 2024   13:26 42
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Decision Tree telah banyak digunakan dalam berbagai aplikasi. Namun, penting untuk memahami kelebihan dan kekurangannya agar dapat memilih algoritma yang tepat untuk setiap masalah.

4. Random Forest

Random Forest adalah salah satu algoritma machine learning yang paling populer dan serbaguna. Algoritma ini termasuk dalam kategori ensemble learning, di mana beberapa model (dalam hal ini, decision tree) digabungkan untuk menghasilkan prediksi yang lebih akurat dan stabil dibandingkan dengan menggunakan satu model saja. Bagaimana Cara Kerja Random Forest?

  1. Pembentukan Banyak Decision Tree: Random Forest membangun banyak decision tree secara acak. Setiap pohon dibangun dengan menggunakan sampel data yang berbeda (dengan penggantian) dan hanya mempertimbangkan sebagian fitur secara acak. Proses ini disebut bootstrapping dan feature randomisation.

  2. Pengambilan Keputusan: Ketika ada data baru yang ingin diprediksi, setiap pohon dalam hutan akan memberikan prediksinya. Prediksi akhir dari Random Forest didapatkan dengan melakukan voting mayoritas dari semua pohon. Jika masalahnya adalah klasifikasi, kelas yang paling sering diprediksi oleh pohon-pohon akan menjadi prediksi akhir. Jika masalahnya adalah regresi, nilai rata-rata dari semua prediksi pohon akan menjadi prediksi akhir.

Random Forest adalah algoritma yang kuat dan fleksibel yang dapat digunakan untuk berbagai masalah machine learning. Dengan memahami prinsip kerjanya dan kelebihannya, Anda dapat memanfaatkan algoritma ini untuk membangun model prediksi yang akurat dan handal.

5. Support Vector Machine (SVM)

Support Vector Machine (SVM) adalah salah satu algoritma pembelajaran mesin yang paling populer dan kuat, terutama untuk masalah klasifikasi. SVM bekerja dengan cara mencari hyperplane yang optimal untuk memisahkan data menjadi dua kelas atau lebih. Hyperplane ini dapat dibayangkan sebagai sebuah garis (dalam dua dimensi) atau bidang (dalam dimensi yang lebih tinggi) yang memisahkan data dengan margin yang sebesar-besarnya.

Konsep Dasar SVM

 

  • Hyperplane: Ini adalah batas keputusan yang memisahkan data menjadi dua kelas atau lebih. Dalam ruang dua dimensi, hyperplane adalah garis, sedangkan dalam ruang tiga dimensi, hyperplane adalah bidang.

  • Margin: Jarak antara hyperplane dan data terdekat dari masing-masing kelas disebut margin. SVM berusaha mencari hyperplane yang memaksimalkan margin ini.

  • Support Vector: Data titik yang paling dekat dengan hyperplane disebut support vector. Support vector ini sangat penting karena mereka menentukan posisi dan orientasi hyperplane.

HALAMAN :
  1. 1
  2. 2
  3. 3
  4. 4
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun