Mohon tunggu...
Indobot Academy
Indobot Academy Mohon Tunggu... Lainnya - PT Ozami Inti Sinergi

About Indobot Academy PT Ozami Inti Sinergi adalah perusahaan yang bergerak di bidang pendidikan dengan Kode KBLI 85499, 85493, 85497, 85495 serta sudah memiliki sertifikat ISO 9001 : 2015. Didirikan berdasarkan Akta Pendirian No. 14 tanggal 25 Februari 2021 yang telah mendapatkan pengesahan dari Menteri Hukum dan Hak Asasi Manusia Nomor AHU-0013991.AH.01.01 Tanggal 26 Februari 2021 dan telah dicatatkan dalam Sistem Administrasi Badan Hukum No AHU-0013991.AH.01.01 Tahun 2021 tanggal 26 Februari. Kantor Pusat Yogyakarta Jln. Affandi No 5, Kec. Depok, Kab. Sleman, D.I.Yogyakarta Contact Email : office@indobot.co.id 0813-2564-5334 - CS Rakhmi 0851-5731-7552 - Partnership Farhan Link Bio: taplink.cc/indobotacademy

Selanjutnya

Tutup

Ilmu Alam & Tekno

Mulai Belajar Machine Learning dari Nol!

20 September 2024   11:53 Diperbarui: 20 September 2024   12:17 92
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.

Contoh klasik reinforcement learning adalah permainan catur. Komputer akan belajar langkah terbaik dengan mencoba berbagai kemungkinan langkah dan mendapatkan hadiah jika langkah tersebut mengarah pada kemenangan.

Manakah yang Terbaik?

Pilihan jenis machine learning yang akan digunakan tergantung pada masalah yang ingin dipecahkan dan data yang tersedia. Supervised learning sangat cocok untuk tugas-tugas klasifikasi dan regresi, seperti memprediksi harga rumah atau mengidentifikasi penyakit.

Unsupervised learning berguna untuk menemukan pola yang tidak diketahui sebelumnya, seperti segmentasi pasar atau deteksi anomali. Sedangkan reinforcement learning sering digunakan untuk masalah kontrol, seperti robot yang belajar berjalan atau mobil self-driving.

Masing-masing jenis machine learning memiliki kekuatan dan kelemahannya sendiri. Dengan memahami perbedaan antara supervised, unsupervised, dan reinforcement learning, Anda akan lebih siap untuk memilih algoritma yang tepat untuk menyelesaikan masalah bisnis Anda.

Rahasia Data Scientist! Algoritma Machine Learning yang Wajib Diketahui

Sebagai seorang data scientist, pemilihan algoritma yang tepat adalah kunci keberhasilan dalam membangun model machine learning yang akurat dan handal. Seolah-olah memilih senjata yang tepat untuk memenangkan pertempuran data.

Setiap algoritma memiliki kekuatan dan kelemahannya masing-masing, sehingga penting untuk memahami karakteristik setiap algoritma sebelum mengaplikasikannya pada masalah yang sedang dihadapi.

Algoritma Regresi Linear adalah salah satu algoritma yang paling sederhana namun sangat kuat. Algoritma ini digunakan untuk memprediksi nilai numerik, seperti harga rumah berdasarkan luas tanah, jumlah kamar, dan lokasi.

Algoritma Klasifikasi seperti Decision Tree dan Random Forest lebih cocok untuk masalah yang membutuhkan pengelompokan data, misalnya mengklasifikasikan email sebagai spam atau tidak spam.

Decision Tree membangun model keputusan dalam bentuk pohon, sedangkan Random Forest adalah kumpulan dari banyak decision tree yang bekerja sama untuk meningkatkan akurasi.

Support Vector Machine (SVM) adalah algoritma yang sangat fleksibel, dapat digunakan untuk masalah klasifikasi maupun regresi. SVM bekerja dengan mencari hyperplane yang memisahkan data menjadi dua kelas atau lebih. Sementara itu, Neural Network adalah algoritma yang terinspirasi oleh struktur otak manusia.

Neural network terdiri dari banyak lapisan neuron yang saling terhubung, memungkinkan model untuk belajar fitur yang sangat kompleks. Neural network sangat efektif untuk tugas-tugas seperti pengenalan gambar, pemrosesan bahasa alami, dan pengenalan suara.

Kapan Harus Menggunakan Algoritma Tertentu?

HALAMAN :
  1. 1
  2. 2
  3. 3
  4. 4
Mohon tunggu...

Lihat Konten Ilmu Alam & Tekno Selengkapnya
Lihat Ilmu Alam & Tekno Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun