Mohon tunggu...
Bob S. Effendi
Bob S. Effendi Mohon Tunggu... Wiraswasta - Konsultan Energi

Konsultan Energi, Pengurus KADIN dan Pokja ESDM KEIN

Selanjutnya

Tutup

Money Artikel Utama

Thorium : Sebuah Revolusi Energi

10 Juli 2015   22:20 Diperbarui: 4 April 2017   17:24 91301
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.

Beberapa keunggulan MSR dengan bahan bakar thorium dan garam cair (TMSR) dibanding reaktor LWR pada umumnya antara lain :
  1. TERBUKTI: reaktor experimen MSRE 7 MW  sudah pernah di operasikan oleh Oak Ridge National Laboratory selama 13,000 jam (1965 – 1969) tanpa masalah. MSR adalah satu-satunya reaktor Generasi IV yang sudah terbukti.
  2. TEKANAN NORMAL : reaktor TMSR bekerja dalam tekanan normal (1 ATM) sehingga tidak membutuhkan struktur pelindung yang berat yang membuat konstruksi TMSR jauh lebih murah.-- Sementara reaktor LWR bekerja pada tekanan 144 ATM atau setara pada kedalaman 1,5 km dibawah laut, ketebalan betonnya saja 1,5 meter. Tekanan yang tinggi dapat menimbulkan ledakan bila terjadi kebocoran atau meltdown seperti pada kasus Fukushima
  3. LIMBAH LEBIH KECIL : TMSR mengkonsumsi lebih dari 90% bahan bakar dibanding LWR yang hanya 3% sehingga sisa limbah radioaktif sangat kecil dengan tingkat radioaktif jauh lebih kecil di banding Uranium dan Plutonium dan limbah tersebut dapat di campur lagi sebagai bahan bakar TSMR – Sebagai perbandingan 1000 MW PLTN LWR menghasilkan limbah 35 ton sementara TSMR hanya 170 Kg.
  4. LEBIH EFISIEN : Karena TMSR bekerja pada tempratur yang cukup tinggi sekitar 700 C dibanding LWR yang hanya 300 C maka TMSR dapat mengkoversi panas menjadi listrik jauh lebih efisien di banding LWR dengan tingkat konversi mendekati 50% bahkan jauh lebih baik daripada batubara dan gas yang membuat tingkat keekonomisan sangat tinggi.
  5. ANTI MELTDOWN : Karena bahan bakar dan pendingin TMSR sudah dalam keadaan cair (melt) maka TMSR tidak mungkin terjadi meltdown. Reaksi fisi TMSR dapat berhenti dalam sekejap (dalam hitungan menit) tanpa adanya decay heat yang berkepanjangan. Tidak seperti LWR bahkan setelah control rod dimasukan untuk menghentikan reaksi fisi tetapi decay heat pada tempratur 900 C masih tetap berlangsung yang menyebabkan akumulasi gas Hidrogen dapat menyebabkan terjadi meltdown dan ledakan yang meruntuhkan struktur pelindung -- seperti kasus Fukushima.
  6. PASSIVE SAFETY : Ketika terjadi hilangnya listrik atau bencana lainnya maka garam cair akan meluncur ke tempat penampungan di bawah tanah secara otomatis tanpa bantuan listrik atau manusia secara gravitasi dan karena tidak adanya pemanasan maka dalam waktu singkat garam cair akan mengeras menjadi kristal sehingga aman. -- hal inilah yang di sebut “passive safety” atau “walk away safety” yang hampir menjadi kriteria utama semua jenis reaktor generasi ke IV, tentunya bagi jenis LWR hal ini sangat sulit di laksanakan dengan mudah, karena prinsip LWR adalah pendingin air, maka untuk melaksanakan fungsinya pompa air harus bekerja.
  7. MODULARITY : Sejak awal prinsip desain TMSR dibuat sangat sederhana dengan pemikiran dapat di fabrikasi di pabrik lalu di angkut kelokasi dibanding dibuat di lokasi hampir semua PLTN saat ini yang di bangun di lokasi. – Hal ini bertujuan membuat biaya yang murah (karena fabrikasi) dan pembangunan yang cepat. Di perkirakan di butuhkan hanya 24 bulan untuk membangun 1000 MW dibanding 5 – 7 tahun untuk LWR. – Modularity saat ini menjadi bagian dari design philosphy dari Advanced Reactor program yang di biayai oleh AS.
  8. SCALABILITY : Hal ini juga merupakan prinsip desain TSMR sejak awal. Dengan bahan bakar cair dan reaktor yang sederhana membuat TSMR dapat di buat sangat kecil atau sangat besar. Bayangkan saat itu saja (1957) Weinberger sudah mendesain reaktor cair ARE (Aircraft Reactor Experiment) dengan daya 2,5 MW untuk propulsi mesin jet bomber yang dapat terbang nonstop selama beberapa bulan tapi sayang program tersebut di batalkan karena alasan politis. – Saat ini beberapa perusahaan startup Thorium banyak yang mendesain dengan reaktor skala kecil seperti 25 MW, 50 MW dan 250 MW yang di tujukan untuk negara2 berkembang. Hal ini tidak mungkin di lakukan oleh reaktor LWR konvensional. Sangat ideal untuk Indonesia bagian Timur yang konsumsi listrik rendah.
  9. TIDAK BUTUH AIR : Hampir semua PLTN memakai pendingin air oleh sebab itu harus dibangun di pinggir laut atau sungai besar. Karena TSMR memakai garam cair bukan air sebagai pendingin maka TMSR tidak harus di bangun di pinggir laut atau sungai karena tidak membutuhkan air dalam jumlah besar, sehingga dapat di posisikan di tengah daratan seperti wilayah Kalimantan Tengah atau di perbatasan Kalimantan.
  10. LOAD FOLLOWING : Mungkin salah satu keunggulan TMSR yang pastinya akan di sukai oleh PLN adalah Load Following karena bahan bakarnya cair maka daya yang di hasilkan dapat di naikan dan di turunkan dalam waktu cepat.  Hal ini berguna khususnya pada waktu-waktu beban puncak yang biasanya hanya berlangsung tidak lebih dari 2 jam. Sebagian besar pembangkit listrik PLN adalah base load (PLTU dan PLTA) dimana sulit untuk menaikan dan menurunkan daya dengan cepat sehingga PLN harus memakai pembangkit listrik seperti Genset diesel atau Gas yang biayanya mahal untuk mensuplai daya pada beban puncak – Artinya TMSR memiliki kemapuan base load dan load following yang tidak di miliki oleh jenis reaktor bahan bakar pada seperti LWR dan HTGR.
  11. KEEKONOMISAN TERTINGGI : Salah satu keunggulan yang terpenting adalah keekonomisan yang tinggi. Karena prinsip Modularity, Scalability menjadikan TMSR sebagai desain reaktor yang paling sederhana menjadikan biaya pembangunan murah bahkan lebih murah dari PLTU di perkirakan rata-rata dibawah USD 2,5 Juta per MW bandingkan dengan LWR yang di kisaran 7 – 8 Juta per MW . Di tambah harga thorium juga sangat murah dan efisiensi yang tinggi maka biaya produksi listrik TMSR tidak akan lebih dari USD 3 sen/kwh, sementara rata-rata biaya produksi listrik PLN saat ini di atas 10 – 12 sen dan tarif listrik di kisaran 9 sen maka dari tahun ke tahun subsidi listrik naik terus dan mungkin dapat membuat PLN menjadi untung karena selama rugi terus – Bayangkan pemerintah tidak perlu lagi mensubsidi PLN bahkan tarif listrik mungkin dapat turun.

Walaupun perusahaan Nuklir besar yang membangun PLTN saat ini mencoba mendesain generasi berikut reaktor jenis PWR generasi berikutnya (Next Gen) dengan beberapa fitur pasive safety, modularity dan keekonomisan yang lebih tinggi seperti , AP1000 (Westinghouse), Areva EPR (Areva), ACP 100 (CNNC china), Korea SMART, NuSclae (NuScale), M-Power (Babcock & Wilcox), dan banyak lagi, tetapi tetap pada akhirnya tidak dapat menandingi TMSR dari sisi keselamatan dan keekonomisan - TMSR akan menjadi reaktor yang termurah biayanya.

Analoginya adalah ketika tahun 80'an pertama muncul Personal Computer dan saat itu ada berbagai jenis operating sistem yang meniru Microsoft DOS dan Apple yang sudah muncul terdahulu dengan Apple II nya. Bahkan ketika Microsoft merelis windows pada tahun 1985 banyak yang mencemooh termasuk Apple tapi 10 tahun kemudian Windows menguasai 87% pasar operating system termasuk apple akhirnya menyerah dan membiarkan aplikasi Windows dapat di pakai di Mac OS.

Saya yakin hal yang sama akan terjadi dengan reaktor nuklir. Paska beroperasinya TMSR pada 2020 tidak akan ada lagi pihak yang akan membangun reaktor yang bukan TMSR dan tidak ada lagi yang akan memakai Uranium sebagai bahan bakar hanya akan ada 2 pilihan : Thorium atau Limbah Nuklir. 

Fungsi lainnya dari TMSR

Di karenakan tempratur yang di hasilkan reaktor TMSR sangat tinggi mendekati 800 C maka panas ini dapat di manfaatkan antara lain :

PRODUKSI AIR BERSIH : Instalasi Desalinisasi (ID) air laut menjadi air tawar membutuhkan listrik yang sangat besar karena sebagian besar memakai teknologi Reverse Osmosis (RO), oleh sebab itu biasanya ID membangun pembangkit listrik sendiri. - Perbedaan dengan TSMR adalah proses desalinisasi memanfaatkan panas bukan melalui RO, sangat sederhana seperti memanaskan air di ketel lalu uapnya di dinginkan -- sehingga dari sisi cost akan sangat kompetitif dibanding ID dengan proses RO karena panas yang di pakai tidak ada biaya alias gratis. -- info lebih lanjut klik disini.

PRODUKSI HIDROGEN : Panas yang di hasilkan dapat juga di pakai untuk menghasikan hidrogen yang dapat dipakai untuk menggantikan CNG sebagai bahan bakar kendaraan. -- dibeberapa negara Eropa, Amerika dan Jepang kendaraan umum seperti bus banyak yang memakai Hidrogen di banding CNG atau dapat menggantikan premium. Biaya per liter Hydrogen (H2) di perkirakan hanya sepertiga harga bahan bakar minyak (premium/pertamax) atau seperempat harga gas CNG  -- info lebih lanjut klik disini

Jadi jelas sekali bahwa bukan saja TMSR dapat menghasilkan listrik tetapi juga menghasilkan beberapa manfaat lainnya yang tidak dapat di lakukan oleh pembangkit listrik lainnya.

Perkembangan TMSR saat ini

Sejak terjadinya Fukushima pembahasan tentang TMSR mulai hidup kembali bahkan sebuah forum International, International Thorium Energy Organisation sudah di bentuk dan melakukan konprensi internasional, International Thorium Energy Confenrences (IThEC) setiap tahun sejak 2010. Bahkan Sekjen Badan Dunia Energi Nuklir, IAEA, Hans Blix dan Carlo Rubbia, pemenang Hadiah Nobel Fisika dan juga menjabat Direktur CERN yang keduanya hadir sebagai pembicara pada IThEC 2013 untuk memberikan dukungan terhadap Thorium yang di sampaikan sebagai sumber energi masa depan -- Hadirnya kedua tokoh Nuklir yang terpandang tersebut menunjukan bahwa Thorium Energy bukanlah lagi sebuah wacana tetapi merupakan sebuah realita yang akan terjadi dalam waktu dekat.  (interview Hans Blix tentang Thorium Energy dan Presentasi Carlo Rubbia pada IThEO 2013 dapat di lihat dengan mengklik namanya di atas)

HALAMAN :
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
Mohon tunggu...

Lihat Konten Money Selengkapnya
Lihat Money Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun