Mohon tunggu...
Fajar Andriansyah
Fajar Andriansyah Mohon Tunggu... lainnya -

mahasiswa semester akhir IT Telkom yang suka makan sama jalan-jalan

Selanjutnya

Tutup

Nature

Fuzzy EAs

1 Juni 2011   05:29 Diperbarui: 26 Juni 2015   04:59 361
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Fuzzy logic telah sukses diaplikasikan di berbagai bidang. Kelebihan fuzzy logic terletak pada variabel, nilai dan aturan linguistik sehingga memudahkan system enginer untuk mentransfer pengetahuan manusia (pakar/expert) ke dalam system komputer yang dibangunnya. Ukuran pengetehuan untuk system yang di bangun dengan fuzzy logic jauh lebih kecil jika dibandingkan dengan yang dibangun menggunakan first order logic maupun logic yang lain. Namun demikian pembangunan fuzzy system akan lebih sulit manakala tidak tersedia pengetahuan pakar. Solusinya adalah dengan penggunaan metode Genetic Algorithm pada Fuzzy System. Optimasi Fungsi Keanggotaan Terdapat 2 cara yang dapat dilakukan dalam mengoptimasi fungsi keanggotaan, yaitu : 1.Optimasi Batas-batas Fungsi Keanggotaan Jika sudah tersedia pengetahuan pakar tentang jumlah dan bentuk Fungsi Keanggotaan yang ideal, maka optimasi cukup pada batas-batas fungsi keanggotaan saja. Pada banyak masalah batasan fungsi keanggotaan adalah berupa bilangan real, maka disini kita dapat menggunakan representasi integer dalam  pembangunan GA untuk optimasi batas-batas fungsi keanggotaan dengan menggunakan representasi real. Selanjutnya kromosom dapat kita evaluasi dengan fungsi fitness tertentu. Dalam hal ini kita harus memiliki pasangan data input dan output (training set). Kita juga harus membangun fuzzy system dengan lengkap. Nilai fitness dapat dihitung dengan menggunakan mean sequare error (MSE) antara target dengan keluaran yang dihasilkan oleh fuzzy system untuk seluruh pasangan dalam system tersebut. Semakin kecil MSE dalam system tersebut, maka semakin besar pula nilai fitness yang dihasilkan. Oleh sebab itu maka fungsi fitness nya adalah sebagai berikut : 2.Optimasi Jumlah, Bentuk dan Batas-batas Fungsi Keanggotaan Jika kita memliki pengetahuan pakar tentang fuzzy rules yang optimal dan sekumpulan data yang bisa digunakan sebagai training set. , namun tidak memiliki pengetahuan pakar mengnai jumlah, bentuk, batas dari fungsi keanggotaan yang optimal, maka untuk mengatasi masalah ini, kita dapat menggunakan training set dan fuzzy rules yang ada untuk mengoptimasi fuzzy rules yang ada. Untuk melakukan proses ini tentu saja dibutuhkan representasi kromosom yang lebih kompleks dan ruang solusinya menjadi lebih.besar.

1

0

1

1

0

1

0

0

1

1

1

HALAMAN :
  1. 1
  2. 2
Mohon tunggu...

Lihat Konten Nature Selengkapnya
Lihat Nature Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun