***
Secara keseluruhan, model Multi-view GNN-transformers yang diperkenalkan oleh Luo at al. (2024) menawarkan terobosan signifikan dalam pengembangan sistem rekomendasi sequential. Dengan menggabungkan informasi kolaboratif dari graf ketergantungan item global dengan urutan perilaku individu, model ini berhasil mengatasi beberapa kelemahan utama dari model-model sebelumnya. Peningkatan akurasi yang ditunjukkan melalui berbagai dataset, seperti HR@20 sebesar 36,20% pada MovieLens-1M, menegaskan bahwa pendekatan ini tidak hanya inovatif tetapi juga efektif dalam meningkatkan kualitas rekomendasi.
Implikasi dari penelitian ini sangat luas, terutama dalam konteks aplikasi dunia nyata di mana sistem rekomendasi memainkan peran kunci dalam pengalaman pengguna. Model ini memungkinkan perusahaan untuk memberikan rekomendasi yang lebih relevan dan akurat, yang pada akhirnya dapat meningkatkan kepuasan dan loyalitas pelanggan. Selain itu, dengan efisiensi komputasi yang lebih baik, model ini juga dapat diimplementasikan secara lebih luas tanpa memerlukan sumber daya yang berlebihan.
Ke depan, tantangan yang mungkin dihadapi adalah bagaimana mengoptimalkan model ini untuk berbagai jenis data yang lebih kompleks dan beragam, serta bagaimana mempertahankan efisiensi komputasi saat skala data terus meningkat. Namun, dengan fondasi yang kuat yang telah dibangun oleh penelitian ini, langkah-langkah menuju pengembangan sistem rekomendasi yang lebih canggih dan adaptif tampaknya semakin dekat. Model Multi-view GNN-transformers tidak hanya menunjukkan potensi besar dalam dunia akademis, tetapi juga dalam aplikasi praktis yang dapat memberikan dampak nyata bagi industri.
Referensi
Luo, T., Liu, Y., & Pan, S. J. (2024). Collaborative sequential recommendations via multi-view GNN-transformers. ACM Transactions on Information Systems, 42(6), Article 141. https://doi.org/10.1145/3649436
Baca konten-konten menarik Kompasiana langsung dari smartphone kamu. Follow channel WhatsApp Kompasiana sekarang di sini: https://whatsapp.com/channel/0029VaYjYaL4Spk7WflFYJ2H