Mohon tunggu...
A I
A I Mohon Tunggu... Lainnya - mahasiswa

mahasiswa

Selanjutnya

Tutup

Ilmu Alam & Tekno

Penggunaan MTK Diskret dalam Kerangka Kerja untuk Perkiraan Waktu Perjalanan, Jarak, Kecepatan, dan Level of Service (LOS)

28 April 2024   17:17 Diperbarui: 28 April 2024   17:39 138
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.

Penggunaan Matematika Diskret dalam Kerangka Kerja untuk Perkiraan Waktu Perjalanan, Jarak, Kecepatan, dan Level Of Service (LOS), Berdasarkan Data GPS pada Sistem Smart City

 

Abstrak:

Karakterisasi jalan bisa dilakukan melalui jarak, waktu perjalanan, kecepatan rata-rata, aliran atau kepadatan. Dalam makalah ini, Level of Service (LOS) telah digunakan sebagai ukuran alternatif untuk karakterisasi segmen jalanan, LOS mengkategorikan status lalu lintas sesuai dengan kualitas pelayanan jalanan perkotaan, dengan mempertimbangkan tiga kategori: sedikit lalu-lintas, ketegangan moderat dan kemacetan. Kerangka kerja yang diusulkan menggunakan tiga bidang data GPS (Date-Time, Latitude, dan Longitude) untuk memperkirakan Waktu Perjalanan, Jarak dan Kecepatan pada dua tingkat analisis yang berbeda: jejak data GPS dan segmen jalan.

Pada tingkat segmen analisis rata-rata kecepatan telah digunakan untuk menghitung skala LOS dan karakterisasi segmen jalan dengan LOS, warna dan kinerja. Sebagai studi kasus, subset 1012 jejak GPS-Data, yang dikumpulkan dari Beijing, China, dianalisis. Data trajektori ini sesuai dengan 90 menit taksi. Implementasi kerangka kerja ini menunjukkan bahwa, dengan menggunakan hanya tiga bidang GPS-Data, informasi lalu lintas tentang kendaraan individual dapat diperkirakan dan digunakan untuk karakterisasi segmen jalan dengan kecepatan rata-rata dan LOS yang sesuai.

Pendahuluan

Pelacakan mobilitas menggunakan perangkat GPS telah membawa kepada komunitas teknik transportasi perspektif baru untuk mengumpulkan informasi kendaraan. Perangkat ini memungkinkan untuk mengumpulkan jejak Geo Positioning System, yang disebut GPS-Data, termasuk ID perangkat, lokasi dalam koordinat, waktu, kecepatan dan jarak. Informasi ini dapat disimpan di perangkat untuk analisis di masa depan, dapat digunakan pada sistem analisis kendaraan ke kendaraan, atau dikirim ke server secara real-time untuk analisanya segera, misalnya dapat digunakan untuk menjelaskan dinamika kendaraan kota-kota seperti simulasi mikro dan makroskopis, aliran lalu lintas dan perkiraan waktu perjalanan.

Estimasi Waktu Perjalanan untuk UTN dapat dilakukan melalui Segmen Jalan Travel Time Estimation, dan kemudian menggunakannya untuk menghitung waktu perjalanan di sepanjang jalur, yang diberikan oleh asal ke titik tujuan. Dalam konteks ini, dalam [1] sebuah kerangka kerja untuk memperkirakan waktu perjalanan di atas segmen jalan perkotaan disajikan, dalam pekerjaan ini informasi perjalanan real-time dan historis bus-mobil digunakan, meskipun model ini menunjukkan perkiraan waktu perjalanan yang kuat, penulis menyarankan untuk tidak menyederhanakan hasil kecuali mereka telah diperiksa dengan hati-hati dengan pengaturan lokal tertentu. 

Dalam model prediksi waktu perjalanan berbasis pengetahuan yang diusulkan, model ini menggunakan Real-Time dan historis GPS-data yang dikumpulkan dari perangkat seluler, di mana waktu perjalanan di sepanjang jalur dapat diperkirakan dengan menambahkan waktu perjalanan link (sejarah dan saat ini) dan keterlambatan persimpangan. Sebuah sistem routing dinamis Berbasis Ant diusulkan di [3] untuk menghitung dan memprediksi waktu perjalanan di sepanjang segmen jalan serta untuk menemukan rute tercepat. Metode yang didasarkan pada lintasan taksi untuk menemukan rute tercepat diusulkan di [4], metode ini menggunakan Landmark Graph tergantung waktu dan algoritma untuk memperkirakan waktu perjalanan antara dua landmark.

Tujuan utama dari pekerjaan ini adalah untuk mengusulkan kerangka kerja untuk analisis jejak GPS-Data, karakterisasi segmen jalan dengan tingkat Layanan (LOS) dan warna yang sesuai, dan representasi grafis mereka ke dalam peta. Implementasi kerangka kerja ini dapat membantu menganalisis jejak kendaraan individu, menyajikan statistik dan memvisualisasikan kinerja lalu lintas di sepanjang rute yang dikendarai.

Keuntungan utama dari kerangka kerja ini dibandingkan dengan pekerjaan yang disebutkan di atas adalah perhitungan waktu perjalanan, jarak, kecepatan rata-rata, LOS dan visualisasi rute pada dua tingkat yang berbeda: jejak GPS-Data dan segmen jalan. Kerangka kerja ini dapat diterapkan dalam konteks Teknologi Informasi untuk mengumpulkan, menganalisis dan mendistribusikan informasi melalui Sistem Transportasi Cerdas, misalnya, penggunaan smartphone sebagai kendaraan probe untuk melakukan operasi ini, berkontribusi pada pengembangan smartcities dalam dimensi mobilitas cerdas yang diusulkan di [5].

HALAMAN :
  1. 1
  2. 2
  3. 3
Mohon tunggu...

Lihat Konten Ilmu Alam & Tekno Selengkapnya
Lihat Ilmu Alam & Tekno Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun