Penggunaan deep learning (DL) dalam penelitian sistem informasi (SI) telah mengalami peningkatan signifikan dalam beberapa tahun terakhir. Menurut Samtani et al. (2023), DL memiliki potensi besar untuk mengubah cara kita memahami dan mengelola data dalam konteks SI. Namun, seperti yang dijelaskan dalam artikel "Deep Learning for Information Systems Research", tantangan metodologis dan praktis dalam penerapan DL di bidang SI tidak bisa diabaikan. DL, yang merupakan bagian dari teknologi machine learning (ML), menawarkan kemampuan untuk menganalisis data besar (big data) dengan cara yang jauh lebih efektif dibandingkan metode tradisional. Salah satu contohnya adalah bagaimana DL digunakan dalam analisis sentimen berbasis teks, yang telah berhasil meningkatkan akurasi hingga 87% dalam beberapa studi (Samtani et al., 2023).
Namun, adopsi DL dalam SI tidak hanya tentang akurasi. Arsitektur DL juga memungkinkan pengolahan data yang tidak terstruktur, seperti gambar, video, dan suara, yang sebelumnya sulit dianalisis oleh pendekatan machine learning konvensional. Penulis artikel juga menggarisbawahi pentingnya pendekatan multidisipliner dalam penerapan DL di SI, karena keberhasilan implementasinya sangat bergantung pada kolaborasi antara disiplin ilmu komputer, manajemen informasi, dan statistika.
Artikel tersebut juga memaparkan bagaimana DL mampu memproses volume data yang semakin meningkat. Pada tahun 2022 saja, diperkirakan lebih dari 80% data yang dihasilkan bersifat tidak terstruktur, menciptakan tantangan besar bagi peneliti SI (Samtani et al., 2023). Dengan DL, tantangan ini dapat diatasi, tetapi perlu adanya pendekatan yang lebih matang dalam memahami implikasi DL terhadap sistem organisasi.
Dalam artikel "Deep Learning for Information Systems Research" oleh Samtani et al. (2023), salah satu hal menarik yang dijelaskan adalah bagaimana metode deep learning (DL) mampu menjawab beberapa tantangan utama dalam penelitian sistem informasi (SI). DL menawarkan pemecahan masalah berbasis jaringan saraf tiruan (ANN) yang memungkinkan pemrosesan data yang lebih dalam, terutama dalam konteks data tidak terstruktur seperti teks, gambar, dan video.Â