1. Representasi Data sebagai Matriks
Data dalam pembelajaran mesin sering kali direpresentasikan sebagai matriks. Setiap baris pada matriks mewakili sampel data dan setiap kolom mewakili fitur. Misalnya, dalam pengenalan wajah, setiap gambar wajah dapat direpresentasikan sebagai matriks nilai piksel. Dengan cara ini, seluruh dataset yang terdiri dari banyak gambar dapat disimpan sebagai sebuah matriks besar.
Â
2. Transformasi Linear dan Normalisasi Data
Transformasi linear adalah teknik dasar dalam pemrosesan data. Principal Component Analysis (PCA) adalah contoh teknik yang menggunakan transformasi matriks untuk mereduksi dimensi data sambil mempertahankan variabilitas yang paling signifikan. PCA menggunakan konsep eigenvektor dan eigenvalue untuk melakukan transformasi ini.
3. Regresi Linier
Regresi linier adalah salah satu algoritma pembelajaran mesin yang paling sederhana dan sering digunakan. Model ini menggunakan matriks untuk mewakili hubungan antara variabel dependen dan independen. Dalam bentuk yang paling dasar, regresi linier mencari vektor koefisien yang meminimalkan kesalahan prediksi, yang dihitung melalui perkalian matriks.