Mohon tunggu...
Kikan Pratiwi R.
Kikan Pratiwi R. Mohon Tunggu... Mahasiswa - Universitas Halu Oleo

Saya adalah seseorang yang bersemangat dalam mengikuti perkembangan dunia idola dan teknologi. Saya berdedikasi untuk terus belajar dan berkembang dalam bidang yang saya cintai, serta berbagi pengetahuan dan pengalaman saya dengan komunitas yang lebih luas.

Selanjutnya

Tutup

Ilmu Alam & Tekno

Pengolahan Citra Menggunakan Matriks Konvolusi

4 Juni 2024   16:14 Diperbarui: 12 Juni 2024   07:24 1187
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Gambar 5 : Ilustrasi Konvolusi (Rinaldi Munir, 2004, p79)

     Pengolahan citra adalah proses yang mengubah gambar asli menjadi gambar yang lebih baik dengan menggunakan matriks yang telah ditentukan atau diinput secara manual. 

1. Konsep Dasar Metode Konvolusi

     Dalam pengolahan citra, diperlukan metode yang dapat memanipulasi atau memperbaiki gambar. Metode yang dapat digunakan adalah metode konvolusi. Metode konvolusi adalah operasi matematika yang menggabungkan dua fungsi untuk menghasilkan fungsi baru. Dalam konteks pengolahan citra, konvolusi melibatkan manipulasi citra menggunakan masker eksternal atau subwindows. Di sisi lain, filtering hanya menggunakan piksel tetangga untuk menghasilkan piksel baru. Penerapan metode konvolusi sangat luas dalam pengolahan citra. Beberapa tujuan utamanya meliputi penghalusan (smoothing), penajaman (crispening), deteksi tepi (edge detection), dan efek visual lainnya.

     Teknik konvolusi, juga dikenal sebagai spatial filtering, merupakan pendekatan yang umum digunakan dalam pengolahan citra. Pada metode ini, titik yang akan diproses bersama dengan titik-titik di sekitarnya ditempatkan dalam matriks dua dimensi berukuran NxM. Matriks ini disebut matrix tetangga(matrix neighbor) karena dimensinya biasanya merupakan kelipatan ganjil, sehingga titik yang akan diproses diletakkan di tengah matriks. Selain matriks tetangga, dalam teknik spatial filtering, kita juga menggunakan matriks konvolusi (mask/kernel) dengan ukuran yang identik. Mask atau kernel dapat diartikan sebagai kumpulan sebuah matrix dengan format NxM. Ukuran kernel dapat bervariasi mulai dari 2x2, 3x3, hingga 5x5 Kolom-kolom pada matriks konvolusi akan diisi dengan angka-angka yang mempengaruhi tampilan citra agar sesuai dengan kebutuhan.

Dalam operasi konvolusi, kita menggeser kernel konvolusi piksel per piksel pada citra, menghitung nilai piksel keluaran f(i,j), dan menyimpannya dalam matriks baru. Konvolusi sangat bermanfaat untuk melakukan operasi penapisan (filtering) pada citra. Dalam pengolahan citra digital, konvolusi dilakukan secara dua dimensi pada sebuah citra dengan menggunakan persamaan berikut:

Keterangan:

  • f(x,y) adalah citra asal
  • h(x,y) adalah matriks konvolusi
  • g(x,y) adalah citra hasil konvolusi

Konvolusi melibatkan dua fungsi, yaitu f(x) dan g(x), yang didefinisikan sebagai berikut:

Gambar 2 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital.
Gambar 2 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital.
yang dalam hal ini, tanda (*) menyatakan operator konvolusi dan peubah (variable) a adalah peubah bantu.

     Dalam pengolahan citra, kita bekerja dengan nilai-nilai diskrit karena koordinat piksel pada citra memiliki nilai yang diskret. Selain itu, filter atau mask yang digunakan dalam pengolahan citra biasanya memiliki ukuran terbatas. Artinya, pengaruh dari titik-titik yang jauh sudah tidak signifikan dan dapat diabaikan (dianggap nol).

     Dalam pengolahan citra, bentuk diskrit dari operasi konvolusi satu dimensi melibatkan penggunaan matriks konvolusi pada data citra didefinisikan sebagai berikut:

Gambar 3 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
Gambar 3 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital

Untuk fungsi dengan dua dimensi, operasi konvolusi didefinisikan sebagai berikut:

Untuk fungsi integral: 

Gambar 4 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
Gambar 4 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
Untuk fungsi diskrit:

Gambar 4 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
Gambar 4 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital

Ilustrasi konvolusi ditunjukkan pada gambar berikut:

Gambar 5 : Ilustrasi Konvolusi (Rinaldi Munir, 2004, p79)
Gambar 5 : Ilustrasi Konvolusi (Rinaldi Munir, 2004, p79)

f(i,j) = Ap1 + Bp2 + Cp3 + Dp4 + Ep5 + Fp6 + Gp7 + Hp8 + Ip9

2. Variasi Pengolahan Citra Dengan Metode Konvolusi

  •  Smooth

Hasil pengolahan citra dengan menggunakan konvolusi smooth bertujuan untuk mengurangi noise pada citra. Metode ini menghasilkan citra yang lebih halus dan bebas dari gangguan noise. Berikut ini adalah contoh gambar dari hasil metode ini:

Gambar 6 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
Gambar 6 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital

     Dari gambar di atas, terlihat bahwa konvolusi smooth berhasil menghaluskan citra asli yang mengandung noise. Meskipun noise dapat dihilangkan dan citra menjadi lebih halus, operasi smooth juga mengakibatkan efek pemerataan derajat keabuan, sehingga gambar tampak lebih kabur dalam kontrasnya. Efek pengaburan ini dikenal sebagai efek blurring .

  • Gaussian Blur

Konvolusi Gaussian blur mengakibatkan citra menjadi lebih kabur, sehingga sudut-sudut tajam pada citra tampak lebih halus. Hasil dari pengolahan citra dengan konvolusi Gaussian blur dapat bervariasi. Terkadang citra menjadi lebih baik, namun ada juga kemungkinan citra menjadi semakin buruk. Pada Gambar 7 di bawah ini, Anda dapat melihat hasilnya, di mana citra yang telah diolah terlihat lebih halus daripada citra aslinya.

Gambar 7 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
Gambar 7 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
  • Sharpen

Ketika suatu file gambar mengalami proses sharpen, terjadi perubahan di mana warna-warna menjadi lebih tajam. Konvolusi sharpen sangat bermanfaat untuk memperjelas citra yang awalnya terlihat halus atau blur, sehingga hasilnya tampak lebih baik dari pada citra sebelumnya. Anda dapat melihat hasil evaluasi citra yang telah diolah dengan konvolusi sharpen pada Gambar 8. Hasilnya menampilkan warna yang lebih jelas dan cerah.

Gambar 8 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
Gambar 8 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
  • Mean Removal

Konvolusi mean removal memberikan ketajaman lebih pada citra. Meskipun konvolusi mean removal dan konvolusi sharpen memiliki tujuan yang sama untuk mempertajam citra, keduanya berbeda dalam penggunaan masker konvolusi.. Ketajaman yang dihasilkan oleh mean removal lebih tajam daripada hasil dari konvolusi sharpen. Namun, pengguna dapat memilih salah satu metode ini sesuai dengan kebutuhan. Anda dapat melihat hasil evaluasi citra yang telah diolah dengan konvolusi mean removal pada Gambar 9. Citra yang dihasilkan tampak lebih tajam dan lebih nyata, serta memiliki pewarnaan yang lebih baik daripada citra aslinya.

Gambar 9 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
Gambar 9 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
  • Emboss

Embossing adalah teknik yang membuat citra tampak seolah diukir pada permukaan seperti selembar nikel. Dalam konvolusi, koefisien jendela memiliki bobot tengah yang bernilai 0, dan total jumlah bobot dalam jendela konvolusi juga harus sama dengan 0.berikut ini adalah contoh penerapan pada konvolusi emboss ke citra digital , dengan arah kiri, kanan, atas, dan bawah.

Gambar 10 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
Gambar 10 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
  • Edge Detection

 Tepi suatu objek dalam citra dapat diidentifikasi sebagai titik di mana nilai keabuannya memiliki perbedaan yang signifikan dengan titik yang berdekatan. Hasil pengujian konvolusi edge detection dapat dilihat pada Gambar 11. 

Gambar 11 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital
Gambar 11 : Diambil dari jurnal Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital


Referensi

1. Kosasi, S. (2015). Rekonstruksi Degradasi dalam Pengolahan Citra Menggunakan Metode Konvolusi.

2. Gazali, W., Soeparno, H., & Ohliati, J. (2012). Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital. Jurnal Mat Stat, 12(2), 103-113.

3. Wardhani, R. N., & Delimayanti, M. K. (2011). Analisis Penerapan Metode Konvolusi Untuk Untuk Reduksi Derau Pada Citra Digital. Jurnal Poli-Teknologi, 10(2).

4. Munir, R. (2004). Pengolahan citra digital dengan pendekatan algoritmik. Informatika, Bandung, 260.

5. Achmad, B., & Firdausy, K. (2005). Teknik pengolahan citra digital menggunakan Delphi. Yogyakarta: Ardi Publishing.

Baca konten-konten menarik Kompasiana langsung dari smartphone kamu. Follow channel WhatsApp Kompasiana sekarang di sini: https://whatsapp.com/channel/0029VaYjYaL4Spk7WflFYJ2H

HALAMAN :
  1. 1
  2. 2
  3. 3
Mohon tunggu...

Lihat Konten Ilmu Alam & Tekno Selengkapnya
Lihat Ilmu Alam & Tekno Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun