Dengan kemampuannya dalam menganalisis data dalam skala besar dan menemukan pola yang kompleks, Machine Learning telah menjadi alat yang sangat berharga untuk membuat prediksi yang akurat tentang masa depan.
Apa itu Machine Learning dan Bagaimana Cara Kerjanya? Machine Learning merupakan salah satu cabang dari kecerdasan buatan (AI) yang memungkinkan komputer untuk belajar dari data tanpa diprogram secara detail dan eksplisit.
Dengan menggunakan algoritma yang canggih, komputer dapat menemukan pola dalam data historis dan menggunakan pola tersebut untuk membuat prediksi tentang data baru.
Proses dasar dalam Machine Learning
Machine Learning, sebagai cabang dari kecerdasan buatan, memungkinkan komputer untuk belajar dari data tanpa perlu diprogram secara eksplisit. Proses pembelajaran ini melibatkan beberapa tahap yang saling berkaitan. Mari kita bahas lebih rinci setiap tahapannya.
1. Pengumpulan Data: Fondasi Kekuatan Model
Tahap pertama dan paling krusial adalah mengumpulkan data yang relevan. Data dapat berasal dari berbagai sumber, seperti database perusahaan, sensor, media sosial, atau bahkan data publik.
Kualitas dan kuantitas data sangat mempengaruhi akurasi model yang dihasilkan. Semakin banyak dan beragam data yang tersedia, semakin baik model dapat belajar dan membuat prediksi.
2. Pembersihan Data: Menghilangkan Noise
Data yang dikumpulkan seringkali mengandung noise, data yang tidak konsisten, atau nilai yang hilang. Proses pembersihan data bertujuan untuk menghilangkan noise tersebut agar model dapat belajar dari data yang bersih dan akurat.
Teknik pembersihan data yang umum digunakan meliputi penanganan nilai yang hilang, deteksi dan penghapusan outlier, serta normalisasi data.