3. Probability Distribution:
Total micro state: \[\mathcal{N}(\Lambda) \sim e^{S_{\text{dS}}} = \exp\left( \frac{24\pi^2 M_{\text{Pl}}^4}{V(\phi)} \right), \] where \( V(\phi) \) is the inflaton potential when inflation ends.
4. Numerical Example:
For \( \Lambda \sim 10^{-122} M_{\text{Pl}}^4 \): \[S_{\text{dS}} \approx 2.9 \times 10^{122}, \quad \mathcal{N}(\Lambda) \sim e^{10^{122}}. \]
Implementation Notes
1. Simulation:
- For high accuracy, use **4th-order Runge-Kutta** for stochastic integration.
- Parallelization with **MPI** for multiverse scale (\( >10^6 \) bubbles).
2. Parameter:
- The values \( q_i \) and \( n_i \) must be validated with **moduli stabilization** (example: KKLT).
3. Entropy