2. Potential Inflaton: Uses a modified form of KKLT.
3. Stochastic Integration: Euler-Maruyama method for the Langevin equation.
4. Calculation of : Combining the flux contribution and residual inflaton energy.
A2. Specific Compactification Parameters Table
The following parameters are based on the Calabi-Yau compactification **CY-1** (example from Bousso-Polchinski):
| Parameters | Value | Description |
| \( N \) (flux amount) | 100 | 3-dimensional cycles in CY-1 |
| \( q_i \) (muatan) | \( 0.1 \pm 0.02 \, M_{\text{Pl}} \) | Koppling string \( g_s \approx 0.1 \) |
| \( \Lambda_0 \) | \( -10^{-120} M_{\text{Pl}}^4 \) | Basic vacuum energy |
| \( A, B \) (KKLT) | \( 10^{-5} M_{\text{Pl}}^4 \) | Instanton coefficient |
| \( a, b \) | \( 0.1, 0.2 \, M_{\text{Pl}}^{-1} \) | Potential exponent |