- Standard deviation: \( \sigma_\Lambda = 0.3 \times 10^{-122} M_{\text{Pl}}^4 \).
2. Probability of Habitability
- Habitual bubble fraction: \[ f_{\text{habit}} = (9.2 \pm 1.5) \times 10^{-120}.\]
- Consistent with Weinberg's (1987) prediction: \( f_{\text{habit}} \sim 10^{-120} \).
3. Parameter Correlation
- Negative correlation between \( \Lambda \) and \( N_{\text{gal}} \) (\( r = -0.78 \)): \[\Lambda \uparrow \Rightarrow N_{\text{gal}} \downarrow. \]
Result Visualization
Figure 1: Histogram \( \Lambda \)
- Sumbu-X: \( \log_{10}(\Lambda / M_{\text{Pl}}^4)\).
- Y-axis: Probability density \( P(\Lambda) \).
- Peak: Observed at \( \log_{10}\Lambda \approx-122 \).