- For each flux \( i \), generate \( n_i \sim \text{Poisson}(\lambda=5) \), with the constraint \( |n_i| \leq 10 \).
- Verify that the total flux energy is: \( \sum_{i=1}^N n_i^2 q_i^2 < 2\Lambda_0 \).
2. Solve Inflaton Dynamics:
- Discretization of the stochastic Langevin equation using the Euler-Maruyama method with time step \( \Delta t = 0.01 H^{-1} \): \[\phi_{k+1} = \phi_k + \dot{\phi}_k \Delta t +\sqrt{\frac{H^3}{4\pi^2} \Delta W_k, \] is not \( \Delta W_k \sim \mathcal{N}(0, \Delta t)\).
3. Compute Residual :
- After inflation ends (\( \epsilon > 1 \)), calculate for each bubble: \[ \Lambda = \Lambda_0 - \frac{1}{2} \sum_{i=1}^N n_i^2 q_i^2 + V(\phi_{\text{end}}),\]
where \( V(\phi_{\text{end}}) \) is the inflaton potential energy when inflation ends.
4. Habitability Check:
- Bubble filter by criteria: \[ 0 < \Lambda < \Lambda_{\text{max}} = 10^{-121} M_{\text{Pl}}^4 \quad \text{dan} \quad N_{\text{gal}} > 10^{10},
\] where \( N_{\text{gal}} \) is estimated using the Press-Schechter criterion (Press & Schechter, 1974).
5. Output: