The additional term \( \frac{H^2}{4\pi^2 V'} \) arises from the stochastic correction (Tolley & Wyman, 2010).
2.2 Distribution of \( \Lambda \) in Landscape
2.2.1 Modified Bousso-Polchinski Formula
In string theory, \( \Lambda \) for each universe bubble is given by:
\[\Lambda_k = \Lambda_0 - \frac{1}{2} \sum_{i=1}^N n_i q_i^2, \quad n_i \in \mathbb{Z},\]
where:
- \( \Lambda_0 \): Basic vacuum energy of compactification.
- \( n_i \): The number of quantum flux in the cycle \( \Sigma_i \).
- \( q_i \): Muatan efektif flux (\( q_i \sim \frac{1}{\sqrt{\alpha'}} \)).
Flux Quantization Conditions:
Since \( G_{(3)} \) is a 3-form field, the flux number is quantized: