Lihat ke Halaman Asli

SHINTA DEWI

Mahasiswi UIN Syarif Hidayatullah Jakarta

Kegagalan Mekanika Klasik dan Lahirnya Mekanika Kuantum

Diperbarui: 2 Desember 2022   10:52

Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.

Kegagalan Mekanika Klasik

Mekanika klasik yang selama ini kita ketahui dan pelajari dalam pelajaran SMA seperti materi kinematika dan dinamika mengenai gerak, ternyata memiliki beberapa kelemahan atau kecacatan, hal ini karena pembahasan mekanika klasik belum mampu menjawab beberapa fenomena-fenomena selanjutnya yang lahir dari pemikiran para ilmuwan pada akhir abad ke-19. 

Lantas jika dinyatakan gagal mengapa masih diajarkan hingga saat ini? Tentunya pertanyaan tersebut akan muncul dibenak kalian saat membaca ini, semoga bukan menjadi sebuah perdebatan baru, fisika klasik tetap dipelajari hingga saat ini karena teori yang berlaku dalam fisika klasik sudah berlaku dengan baik dan efektif memberikan penjelasan dengan pendekatan cara pandang terhadap alam semesta secara lebih sederhana sebelum mengenal dan memahaminya lebih luas dalam fisika kuantum. Istilah singkatnya, fisika klasik merupakan dasar yang perlu dipelajari sebelum mempelajari lebih lanjut mengenai fisika kuantum.

Beberapa kegagalan dalam mekanika klasik ialah mengenai teori relativistik klasik yang lahir dari transformasi Galileo dan hukum-hukum Newton tentang gerak, dimana pada teori relativistik klasik dijelaskan bahwa

  • Gerak itu relative
  • Ruang dan waktu mutlak
  • Setiap percobaan yang dilakukan dalam kerangka acuan (pengamatan) kita barulah bermakna fisika apabila dapat dikaitkan dengan percobaan serupa yang dilakukan dalam kerangka acuan mutlak (inersia).

Empat Persamaan Maxwell yang mendasari elektrodinamika klasik, sudah bisa meramalkan bahwa kecepatan gelombang elektromagnetik itu konstan (tidak bergantung pengamat) dan gelombang elektromagnetik merambat tanpa memerlukan medium. Hal tersebut memicu gejolak pemikiran para peneliti klasik saat itu karena para peneliti pada saat itu memahami bahwa semua gelombang merambat melalui medium dengan gerak bersifat relative.

Kemudian pada tahun 1887, Albert A. Michelson bersama dengan rekannya Edward Morley menemukan suatu cara untuk menyelidiki kebergantungan kecepatan cahaya terhadap pengamat. Hasil dari penyelidikan ini memberikan jawaban bahwasannya kecepatan cahaya adalah konstan (tidak bergantung pengamat). Menanggapi hal ini kemudian Lorentz berpikir bahwa jika kecepatan cahaya (gelombang elektromagnetik) itu konstan, maka transformasi Galileo tidak lagi dapat digunakan.

 Sehingga Lorentz merumuskan secara matematis sebuah transformasi baru dan ketika transformasi tersebut diterapkan maka berlaku bahwa kecepatan cahaya itu tidak bergantung pada pengamat. Selanjutnya transformasi Lorentz tersebut menjadi sebuah kerangka baru yang digunakan untuk menganalisis gerak-gerak yang mendekati kecepatan cahaya. Namun Lorentz masih meyakini bahwasannya eter itu ada.

Pada tahun 1905 Einstein mempublish 3 makalah, pada salah satu makalahnya Ia menjelaskan polemik yang tadi dan menjelaskan bahwasannya eter itu tidak ada, memperkenalkan relativitas khusus (Einstein) dan membantah relativitas klasik yang menyatakan ruang dan waktu itu mutlak karena ternyata ruang dan waktu itu relative ketika objek bergerak mendekati kecepatan cahaya. Atas hal ini diketahui bahwa kegagalan teori relativitas klasik ialah tidak berlaku pada kerangka non inersia dan tidak dapat menjelaskan terkait kecepatan cahaya.

Lahirnya Teori Kuantum

Gagasan klasik yang dipercayai sebelumnya menimbulkan perlombaan teori dan praktik diantara para ilmuwan, gagasan-gagasan tersebut yakni:

  • Alam semesta merupakan manifestasi dari sistem-sistem sederhana
  • Keadaan gerak bersifat sekuensial dan deterministic
  • Dapat mengukur dua hal dalam waktu bersamaan dengan ketelitian tinggi

Berawal pada tahun 1792, Josiah Wedgwood mengamati saat porselin dipanaskan di tungku maka akan memancarkan cahaya (warna). Ketika dicek tenyata porselin akan memancarkan warna yang sama saat suhunya sama. Ternyata hal ini terjadi tidak hanya pada porselen. Hal ini memacu para peneliti untuk menggali lebih dalam terkait warna dan suhu tersebut.

Halaman Selanjutnya


BERI NILAI

Bagaimana reaksi Anda tentang artikel ini?

BERI KOMENTAR

Kirim

Konten Terkait


Video Pilihan

Terpopuler

Nilai Tertinggi

Feature Article

Terbaru

Headline